Analisis Sentimen Stakeholder Atas Layanan Haidjpb Pada Media Sosial Twitter Dengan Menggunakan Metode Support Vector Machine dan Naïve Bayes

Authors

  • Muhammad Luthfiy Kurniawan Harsono Nusa Mandiri
  • Yuris Alkhalifi Nusa Mandiri
  • Nurajijah Nusa Mandiri
  • Windu Gata Nusa Mandiri

Keywords:

Naïve Bayes Algoritm, Support Vector Machine Algoritm, haiDJPb, Twitter

Abstract

Creation of a special account on social media Instagram and Twitter that aims to  accommodate the delivery of questions, input, criticism and suggestions from stakeholders  around the ongoing business processes and the use of applications in the framework of budget planning, commitment making, disbursement of the state budget, accounting receipts and financial reporting based on the fact that social media cannot be separated from community activities because the presence of digital devices (smartphones) and affordable internet access makes various groups of people able to obtain information quickly and easily. Organizations have an interest in getting benchmarks for services that have been provided in order to improve the quality of services going forward based on tweets data obtained from Twitter social media. This study discusses the process of collecting and processing tweet data on the @haiDJPb account in order to perform stakeholder sentiment analysis of haiDJPb services on twitter social media using Support Vector Machine and Naïve Bayes algorithms and the accuracy of the Support Vector Machine algorithm is 74.55 % and 77.18% for the Naïve Bayes algorithm. 

References

“Fenomena Media Sosial Dalam Penyebaran Informasi.” [Online]. Available: https://kulonprogokab.go.id/v3/portal/web/view_berita/4586/Fenomena-Media-Sosial-Dalam-Penyebaran-Informasi. [Accessed: 24-Apr-2020]. “Infographic: Twitter Statistics, Facts & Figures | Digital Buzz Blog.” [Online]. Available: http://www.digitalbuzzblog.com/infographic-twitter-statistics-facts-figures/. [Accessed: 28-Apr-2020].

A. Indranandita, B. Susanto, and A. Rahmat, “Sistem Klasifikasi Dan Pencarian Jurnal Dengan Menggunakan

Metode Naive Bayes Dan Vector Space Model,” J. Inform., vol. 4, no. 2, 2011, doi: 10.21460/inf.2008.42.48.

A. Rossi, T. Lestari, R. Setya Perdana, and M. A. Fauzi, “Analisis Sentimen Tentang Opini Pilkada DKI 2017

Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Näive Bayes dan Pembobotan Emoji,” J. Pengemb.

Teknol. Inf. dan Ilmu Komput., vol. 1, no. 12, pp. 1718–1724, 2017.

M. Z. Sarwani and W. F. Mahmudy, “Analisa Twitter Untuk Mengetahui Karakter,” Semin. Nas. Sist. Inf.

Indones., no. November, pp. 2–3, 2015.

Y. I. Claudy, R. S. Perdana, and M. A. Fauzi, “Klasifikasi Dokumen Twitter Untuk Mengetahui Karakter Calon

Karyawan Menggunakan Algoritme K-Nearest Neighbor (KNN),” J. Pengemb. Teknol. Inf. dan Ilmu Komput.,

vol. 2, no. 8, pp. 2761–2765, 2018.

W. Gata, “Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbour pada Data Content Berita

SMS,” vol. 6, pp. 1–13, 2017.

R. S. Perdana and M. A. Fauzi, “Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan

Telekomunikasi Seluler Indonesia Pada Twitter dengan Metode Support Vector Machine dan Lexicon Based

Features Analisis Sentimen Tingkat Kepuasan Pengguna Penyedia Layanan Telekomunikasi Seluler ,” no.

October, 2017.

W. Gata et al., “Algorithm Implementations Naïve Bayes, Random Forest. C4.5 on Online Gaming for

Learning Achievement Predictions,” vol. 258, no. Icream 2018, 2019, doi: 10.2991/icream-18.2019.1.

N. Rahayu, “ANALISIS SENTIMEN PASAR OTOMOTIF MOBIL : TWEET TWITTER MENGGUNAKAN

NAÏVE BAYES,” vol. 8, no. 1, pp. 113–120, 2017.

M. Rivki, M. Bachtiar, T. Informatika, F. Teknik, U. K. Indonesia, and J. Dipati, “Jurnal Sistem Informasi (

Journal of Information Systems ). 1 / 13 ( 2017 ), 31-37 DOI : http://dx.doi.org/10.21609/jsi.v13i1.500,” vol.

, pp. 31–37, 2017.

W. E. Nurjanah, R. S. Perdana, and M. A. Fauzi, “Analisis Sentimen Terhadap Tayangan Televisi Berdasarkan

Opini Masyarakat pada Media Sosial Twitter menggunakan Metode K-Nearest Neighbor dan Analisis Sentimen

Terhadap Tayangan Televisi Berdasarkan Opini Masyarakat pada Media Sosial Twitter menggunakan M,” no.

October, 2017.

S. Karyadi and H. Yasin, “1 , 2 , 3,” vol. 5, pp. 763–770, 2016.

S. Mujilahwati, “PRE-PROCESSING TEXT MINING PADA DATA TWITTER,” 2016.

Downloads

Published

2024-02-29

How to Cite

Harsono, M. L. K., Alkhalifi, Y., Nurajijah, & Gata, W. (2024). Analisis Sentimen Stakeholder Atas Layanan Haidjpb Pada Media Sosial Twitter Dengan Menggunakan Metode Support Vector Machine dan Naïve Bayes . Infoman’s : Jurnal Ilmu-Ilmu Informatika Dan Manajemen, 16(1), 1–8. Retrieved from https://ejournal.lppmunsap.org/index.php/infomans/article/view/1059

Issue

Section

Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.