Implementasi Metode NLP Dalam Pembuatan Chat Bot Telegram
Abstract
In the current digital era, the use of chat bots has become increasingly popular, especially on
instant messaging platforms like Telegram. To create a better user experience, accurate and
responsive understanding of user messages is necessary. In this regard, Natural Language
Processing (NLP) plays a crucial role. The goal of this research is to implement NLP methods in
the development of a Telegram chat bot using an appropriate and effective approach. In this
implementation, experiments and testing are conducted to ensure the functionality and
responsiveness of the bot. Testing involves sending messages to the bot and evaluating the results
of NLP processing and bot responses. During this process, enhancements and improvements are
made to enhance the bot's ability to understand and respond to user messages more effectively.
NLP methods are applied in message handling. Entity recognition is used to identify important
information such as names, locations, or dates from user messages. Intent understanding is
performed to determine the intentions or goals behind received messages. Natural language
processing is used to analyze sentiment, keywords, or language structure in messages. Based on
the results of NLP processing, the bot provides appropriate responses to users through the
Telegram bot API.
References
Aarsen, T., 2005. NLTK. [Online]
Available at: https://www.nltk.org/
[Accessed 10 June 2023].
Anon., 2021. 5 Simple Ways to Tokenize Text in Python. [Online]
Available at: https://towardsdatascience.com/5-simple-ways-to-tokenize-text-in-python-92c6804edfc4
Anon., n.d. PyTorch. [Online]
Available at: https://pytorch.org/
Aprilinda, Y. et al., 2020. Jurnal Manajemen Sistem Informasi Dan Teknologi. Chatbot Menggunakan
Natural Language Processing untuk Pembelajaran Bahasa Inggris Berbasis Android, Volume 8.
Darmawan, L., 2017. Stemming Word dalam Carik Bot. [Online]
Available at: https://codepolitan.com/blog/stemming-word-dalam-carik-bot-59a9ef6e96088
Elcholiqi, A. & Musdholifah, A., 2020. IJCCS (Indonesian Journal of Computing and Cybernetics
Systems). Chatbot in Bahasa Indonesia Using NLPto Provide Banking Information, Volume 14, pp. 91-
Fachrizal, R., 2021. Apa Itu Natural Language Processing (NLP) dan Apa Saja Contohnya?. [Online]
Available at: https://infokomputer.grid.id/read/122845367/apa-itu-natural-language-processing-nlp-danapa-saja-contohnya?page=all
Krayewski, K., 2022. How NLP Chatbots Work. [Online]
Available at: https://www.ultimate.ai/blog/ai-automation/how-nlp-text-based-chatbots-work
Magriyanti, A. A., 2018. ANALISIS PENGEMBANGAN ALGORITMA PORTER STEMMING. Sekolah
Tinggi Elektronika dan Komputer PAT.
Maulana, 2022. Natural Language Processing (NLP): Definisi, Cara Kerja, Manfaat, dan Contohnya.
[Online]
Available at: https://pacmann.io/blog/natural-language-processing
Mondal, A., 2021. Complete Guide to Build Your AI Chatbot with NLP in Python. [Online]
Available at: https://www.analyticsvidhya.com/blog/2021/10/complete-guide-to-build-your-ai-chatbot-withnlp-in-python/
[Accessed 2023].
Napizahni, M., 2022. Natural Language Processing (NLP): Penjelasan & Contoh Penerapannya. [Online]
Available at: https://www.dewaweb.com/blog/nlp-adalah/
Pramudita, H. R., 2020. PENERAPAN ALGORITMA STEMMING NAZIEF & ADRIANI DAN
SIMILARITY. Jurnal Ilmiah DASI, Volume 15, pp. 15-19.
Rizki, A., 2020. BelajarPython 9: Operasi ‘Tokenizing’ pada Teks Berbahasa Indonesia. [Online]
Available at: https://adityarizki.net/belajarpython-9-operasi-tokenizing-pada-teks-berbahasa-indonesia/
Sahroni, I., 2012. String Tokenizer. [Online]
Available at: https://blogermencobasukses.wordpress.com/2012/10/05/stringtokenizer/
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Infoman's : Jurnal Ilmu-ilmu Informatika dan Manajemen

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License.